Эволюция звезд: Страница 3

Оглавление статей
Эволюция звезд
Страница 2
Страница 3

Страница 3 из 3

 

 

Когда звезда сжимается, за счет работы сил тяготения выделяется огромная энергия, которая раздувает звезду. Казалось бы, это должно привести к падению температуры в ядре. Но это не так. Против ожидания температура в ядре звезды резко возрастает. В относительно тонком слое вокруг ядра все еще происходит обычное ядерное выгорание водорода, что приводит к увеличению содержания гелия в ядре. Когда в ядре концентрируется около половины массы звезды, последняя расширяется до своего максимального размера и ее цвет из белого становится желтым, а затем красным, так как температура поверхности звезды уменьшается.

Теперь звезда вступает в новую фазу. Температура ядра растет до тех пор, пока не превысит 200 млн. К. При такой температуре начинает выгорать гелий, в результате чего образуется углерод. Три ядра гелия, сливаясь, превращаются в ядро углерода, который оказывается более легким, чем три исходных ядра гелия, поэтому такая реакция также идет с выделением энергии. Снова давление радиации, которое играло столь важную роль, когда звезда находилась на главной последовательности, начинает противодействовать тяготению, и ядро звезды опять удерживается от дальнейшего сжатия. Звезда возвращается к обычным размерам; по мере того как это происходит, температура ее поверхности растет и она из красной становится белой.

В этот момент по некоторым загадочным причинам звезда оказывается неустойчивой. Астрономы полагают, что переменные звезды, то есть звезды, периодически меняющие свою светимость, возникают на этой стадии звездной эволюции, так как процесс сжатия происходит не гладко и на некоторых его этапах возникают ритмические колебания звезды. На этой стадии звезда может пройти через фазу новой, в течение которой она внезапно выбрасывает в межзвездное пространство значительное количество вещества; оно, принимая вид расширяющейся оболочки, может содержать значительную часть массы звезды. Вспышки некоторых новых многократно повторяются, и это означает, что одной вспышки недостаточно, чтобы звезда достигла устойчивости. Но со временем она приобретает устойчивость, колебания исчезают, звезда начинает свой длинный путь к звездному кладбищу. Даже на этой стадии звезда еще способна к активности. Она может стать сверхновой — но об этом позже. Причина, по которой звезда оказывается способной на такую активность, обусловлена количеством вещества, оставшимся у нее к этой стадии.

Когда мы обсуждали процессы, протекающие в недрах звезды, мы говорили, что основным продуктом ядерных реакций (золой) является гелий. По мере того как перерабатывается все больше и больше водорода, растет гелиевое ядро звезды. Водород исчезает, следовательно, энерговыделение за счет этого источника также прекращается. Но при температуре около 200 млн. К открывается еще один путь, следуя которому гелий порождает более тяжелые элементы, и в этом процессе выделяется энергия. Два атома гелия соединяются, образуя атом бериллия, который обычно вновь распадается на атомы гелия. Однако температуры и скорости реакций столь высоки, что, прежде чем происходит распад бериллия, к нему присоединяется третий атом; гелия и образуется атом углерода.

Но процесс не останавливается, так как теперь атомы гелия, бомбардируя углерод, порождают кислород, бомбардируя кислород, дают неон, а бомбардируя неон, производят магний. На этой стадии температура ядра еще слишком низка для образования более тяжелых элементов. Ядро опять сжимается, и так продолжается до тех пор, пока температура не достигнет величины порядка миллиарда градусов и не начнется синтез более тяжелых элементов. Если в результате дальнейшего сжатия ядра температура поднимается до 3 млрд. К, тяжелые ядра взаимодействуют друг с другом до тех пор, пока не образуется железо. Процесс останавливается. Если атомы гелия будут бомбардировать ядра железа, то вместо образования более тяжелых элементов произойдет распад ядер железа.

На этой стадии жизни звезды ее ядро состоит из железа, окруженного слоями ядер более легких элементов вплоть до гелия, а наружный тонкий слой образован водородом, который еще обеспечивает некоторое количество энергии. Наконец наступает время, когда водород оказывается полностью израсходованным и этот источник энергии иссякает. Перестают также действовать и другие механизмы генерации энергии; звезда лишается всяких средств для воспроизводства своих энергетических запасов. Это означает, что она должна умереть.

Теперь, исчерпав запасы ядерной энергии, звезда может только сжиматься и использовать гравитационную энергию, чтобы поддержать свое свечение. Звезда будет сжиматься и ярко светиться. Когда же и эта энергия иссякнет, звезда начнет изменять свой цвет от белого к желтому, затем к красному; наконец она перестанет излучать и начнет непрерывное путешествие в необозримом космическом пространстве в виде маленького темного безжизненного объекта. Но на пути к угасанию обычная звезда проходит стадию белого карлика.

 

I.M. Levill «Beyond the known universe»

Перевод с английского канд. физ.-мат. наук Н.И. Шакуры

 

« Предыдущая — След.

Понравилась статья? Поделиться с друзьями:
Все о космосе
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: